RSS

Aportaciones de Newton y Leibniz

22 Ago

Las aportaciones de Leibniz y Newton fueron las iguientes:

De 1667 a 1669 emprendió investigaciones sobre óptica y fue elegido fellow del Trinity College. En 1669 su mentor, Isaac Barrow, renunció a su Cátedra Lucasiana de matemática, puesto en el que Newton le sucedería hasta 1696. El mismo año envió a John Collins, por medio de Barrow, su «Analysis per aequationes número terminorum infinitos». Para Newton, este manuscrito representa la introducción a un potente método general, que desarrollaría más tarde: su cálculo diferencial e integral.

Newton había descubierto los principios de su cálculo diferencial e integral hacia 16651666 y, durante el decenio siguiente, elaboró al menos tres enfoques diferentes de su nuevo análisis.

Newton y Leibniz protagonizaron una agria polémica sobre la autoría del desarrollo de esta rama de la matemática. Los historiadores de la ciencia consideran que ambos desarrollaron el cálculo independientemente, si bien la notación de Leibniz era mejor y la formulación de Newton se aplicaba mejor a problemas prácticos. La polémica dividió aún más a los matemáticos británicos y continentales, sin embargo esta separación no fue tan profunda como para que Newton y Leibniz dejaran de intercambiar resultados.

Newton abordó el desarrollo del cálculo a partir de la geometría analítica desarrollando un enfoque geométrico y analítico de las derivadas matemáticas aplicadas sobre curvas definidas a través de ecuaciones. Newton también buscaba cómo cuadrar distintas curvas, y la relación entre la cuadratura y la teoría de tangentes. Después de los estudios de Roberval, Newton se percató de que el método de tangentes podía utilizarse para obtener las velocidades instantáneas de una trayectoria conocida. En sus primeras investigaciones Newton lidia únicamente con problemas geométricos, como encontrar tangentes, curvaturas y áreas utilizando como base matemática la geometría analítica de Descartes. No obstante, con el afán de separar su teoría de la de Descartes, comenzó a trabajar únicamente con las ecuaciones y sus variables sin necesidad de recurrir al sistema cartesiano.

Después de 1666 Newton abandonó sus trabajos matemáticos sintiéndose interesado cada vez más por el estudio de la naturaleza y la creación de sus Principia.

Aunque la noción matemática de función estaba implícita en la trigonometría y las tablas logarítmicas, las cuales ya existían en sus tiempos, Leibniz fue el primero, en 1692 y 1694, en emplearlas explícitamente para denotar alguno de los varios conceptos geométricos derivados de una curva, tales como abscisa, ordenada, tangente, cuerda y perpendicular. En el siglo XVIII, el concepto de «función» perdió estas asociaciones meramente geométricas.

Leibniz fue el primero en ver que los coeficientes de un sistema de ecuaciones lineales podían ser organizados en un arreglo, ahora conocido como matriz, el cual podía ser manipulado para encontrar la solución del sistema, si la hubiera. Este método fue conocido más tarde como «Eliminación Gaussiana». Leibniz también hizo aportes en el campo del álgebra booleana y la lógica simbólica.

Cálculo infinitesimal

La invención del cálculo infinitesimal es atribuida tanto a Leibniz como a Newton. De acuerdo con los cuadernos de Leibniz, el 11 de noviembre de 1675 tuvo lugar un acontecimiento fundamental, ese día empleó por primera vez el cálculo integral para encontrar el área bajo la curva de una función y=f(x). Leibniz introdujo varias notaciones usadas en la actualidad, tal como, por ejemplo, el signo «integral» ∫, que representa una S alargada, derivado del latín «summa», y la letra «d» para referirse a los «diferenciales», del latín «differentia». Esta ingeniosa y sugerente notación para el cálculo es probablemente su legado matemático más perdurable. Leibniz no publicó nada acerca de su Calculus hasta 1684. La regla del producto del cálculo diferencial es aún denominada «regla de Leibniz para la derivación de un producto». Además, el teorema que dice cuándo y cómo diferenciar bajo el símbolo integral, se llama la «regla de Leibniz para la derivación de una integral».

Desde 1711 hasta su muerte, la vida de Leibniz estuvo emponzoñada con una larga disputa con John Keill, Newton y otros sobre si había inventado el cálculo independientemente de Newton, o si meramente había inventado otra notación para las ideas de Newton.

Leibniz pasó entonces el resto de su vida tratando de demostrar que no había plagiado las ideas de Newton.

Actualmente se emplea la notación del cálculo creada por Leibniz, no la de Newton.

Si bien las reglas de operación y las principales relaciones entre ellas quedaron claramente establecidas con Newton y Leibniz, y con ello salía a la luz una nueva materia el Cálculo todavía quedaba mucho por hacer.
Sus fundamentos eran imprecisos, no solamente para sus autores, sino para los estudiosos de las matemáticas que les sucedieron durante ese tiempo se buscó pasar de la justificación basada en el pragmatismo dado por la consistencia de los resultados obtenidos, con la visión del mundo físico que ofrecía la geometría hacia una explicación que fuera más allá de lo intuitivamente plausible.
Esto no fue posible hasta en el que el éxito en el desarrollo del formalismo algebraico dio lugar al impulso de sistemas matemáticos independientes de los postulados afines a la experiencia sensorial.
Fue hasta entonces que el Cálculo tuvo manera de adoptar sus propias premisas y construir sus propias definiciones sujetas solamente a los requerimientos de su consistencia interna.
Queremos insistir como se pretende resaltar la gran cantidad de aportaciones que contribuyeron al nacimiento del Cálculo y hacer notar que el desarrollo de sus conceptos principales, la derivada y la integral, tuvieron una larga evolución; primero para llegar a establecerse como operaciones inversas entre si con sus reglas bien definidas, y luego para evolucionar en sus fundamentos desde argumentaciones asentadas en la experiencia sensible, hasta su elaboración final como abstracciones matemáticas definidas en términos de lógica formal mediante la idea de límite de una serie infinita. Así, la derivada y la integral están en el análisis matemático moderno definidas sintéticamente en función de consideraciones ordinales, y no en función de aquellas consideraciones de variación física y cantidades geométricamente continuas que les dieron origen.

 
Deja un comentario

Publicado por en 22 agosto, 2012 en Calculo Diferencial

 

Deja un comentario